Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus.

Identifieur interne : 000487 ( Main/Exploration ); précédent : 000486; suivant : 000488

Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus.

Auteurs : Scott A. Harding ; Christopher J. Frost ; Chung-Jui Tsai

Source :

RBID : pubmed:33015535

Abstract

The tonoplast sucrose transporter PtaSUT4 is well expressed in leaves of Populus tremula × Populus alba (INRA 717-IB4), and its inhibition by RNA-interference (RNAi) alters leaf sucrose homeostasis. Whether sucrose partitioning between the vacuole and the cytosol is modulated by PtaSUT4 for specific physiological outcomes in Populus remains unexplored. In this study, partial defoliation was used to elicit compensatory increases in photosynthesis and transpiration by the remaining leaves in greenhouse-grown poplar. Water uptake, leaf gas exchange properties, growth and nonstructural carbohydrate abundance in source and sink organs were then compared between wild-type and SUT4-RNAi lines. Partial defoliation increased maximum photosynthesis rates similarly in all lines. There was no indication that source leaf sugar levels changed differently between wild-type and RNAi plants following partial defoliation. Sink levels of hexose (glucose and fructose) and starch decreased similarly in all lines. Interestingly, plant water uptake after partial defoliation was not as well sustained in RNAi as in wild-type plants. While the compensatory increase in photosynthesis was similar between genotypes, leaf transpiration increased less robustly in RNAi than wild-type plants. SUT4-RNAi and wild-type source leaves differed constitutively in their bulk modulus of elasticity, a measure of leaf turgor, and storage water capacitance. The data demonstrate that reduced sucrose partitioning due to PtaSUT4-RNAi altered turgor control and compensatory transpiration capacity more strikingly than photosynthesis and sugar export. The results are consistent with the interpretation that SUT4 may control vacuolar turgor independently of sink carbon provisioning.

DOI: 10.1002/pld3.268
PubMed: 33015535
PubMed Central: PMC7522500


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Defoliation-induced compensatory transpiration is compromised in
<i>SUT4</i>
-RNAi
<i>Populus</i>
.</title>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33015535</idno>
<idno type="pmid">33015535</idno>
<idno type="doi">10.1002/pld3.268</idno>
<idno type="pmc">PMC7522500</idno>
<idno type="wicri:Area/Main/Corpus">000073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000073</idno>
<idno type="wicri:Area/Main/Curation">000073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000073</idno>
<idno type="wicri:Area/Main/Exploration">000073</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Defoliation-induced compensatory transpiration is compromised in
<i>SUT4</i>
-RNAi
<i>Populus</i>
.</title>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation>
<nlm:affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</nlm:affiliation>
<wicri:noCountry code="no comma">Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant direct</title>
<idno type="eISSN">2475-4455</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The tonoplast sucrose transporter PtaSUT4 is well expressed in leaves of
<i>Populus tremula</i>
 × 
<i>Populus alba</i>
(INRA 717-IB4), and its inhibition by RNA-interference (RNAi) alters leaf sucrose homeostasis. Whether sucrose partitioning between the vacuole and the cytosol is modulated by PtaSUT4 for specific physiological outcomes in
<i>Populus</i>
remains unexplored. In this study, partial defoliation was used to elicit compensatory increases in photosynthesis and transpiration by the remaining leaves in greenhouse-grown poplar. Water uptake, leaf gas exchange properties, growth and nonstructural carbohydrate abundance in source and sink organs were then compared between wild-type and
<i>SUT4</i>
-RNAi lines. Partial defoliation increased maximum photosynthesis rates similarly in all lines. There was no indication that source leaf sugar levels changed differently between wild-type and RNAi plants following partial defoliation. Sink levels of hexose (glucose and fructose) and starch decreased similarly in all lines. Interestingly, plant water uptake after partial defoliation was not as well sustained in RNAi as in wild-type plants. While the compensatory increase in photosynthesis was similar between genotypes, leaf transpiration increased less robustly in RNAi than wild-type plants. SUT4-RNAi and wild-type source leaves differed constitutively in their bulk modulus of elasticity, a measure of leaf turgor, and storage water capacitance. The data demonstrate that reduced sucrose partitioning due to
<i>PtaSUT4</i>
-RNAi altered turgor control and compensatory transpiration capacity more strikingly than photosynthesis and sugar export. The results are consistent with the interpretation that SUT4 may control vacuolar turgor independently of sink carbon provisioning.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33015535</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">2475-4455</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant direct</Title>
<ISOAbbreviation>Plant Direct</ISOAbbreviation>
</Journal>
<ArticleTitle>Defoliation-induced compensatory transpiration is compromised in
<i>SUT4</i>
-RNAi
<i>Populus</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>e00268</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pld3.268</ELocationID>
<Abstract>
<AbstractText>The tonoplast sucrose transporter PtaSUT4 is well expressed in leaves of
<i>Populus tremula</i>
 × 
<i>Populus alba</i>
(INRA 717-IB4), and its inhibition by RNA-interference (RNAi) alters leaf sucrose homeostasis. Whether sucrose partitioning between the vacuole and the cytosol is modulated by PtaSUT4 for specific physiological outcomes in
<i>Populus</i>
remains unexplored. In this study, partial defoliation was used to elicit compensatory increases in photosynthesis and transpiration by the remaining leaves in greenhouse-grown poplar. Water uptake, leaf gas exchange properties, growth and nonstructural carbohydrate abundance in source and sink organs were then compared between wild-type and
<i>SUT4</i>
-RNAi lines. Partial defoliation increased maximum photosynthesis rates similarly in all lines. There was no indication that source leaf sugar levels changed differently between wild-type and RNAi plants following partial defoliation. Sink levels of hexose (glucose and fructose) and starch decreased similarly in all lines. Interestingly, plant water uptake after partial defoliation was not as well sustained in RNAi as in wild-type plants. While the compensatory increase in photosynthesis was similar between genotypes, leaf transpiration increased less robustly in RNAi than wild-type plants. SUT4-RNAi and wild-type source leaves differed constitutively in their bulk modulus of elasticity, a measure of leaf turgor, and storage water capacitance. The data demonstrate that reduced sucrose partitioning due to
<i>PtaSUT4</i>
-RNAi altered turgor control and compensatory transpiration capacity more strikingly than photosynthesis and sugar export. The results are consistent with the interpretation that SUT4 may control vacuolar turgor independently of sink carbon provisioning.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5098-2370</Identifier>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frost</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5986-8646</Identifier>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9282-7704</Identifier>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Direct</MedlineTA>
<NlmUniqueID>101716131</NlmUniqueID>
<ISSNLinking>2475-4455</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">defoliation</Keyword>
<Keyword MajorTopicYN="N">relative water content</Keyword>
<Keyword MajorTopicYN="N">subcellular sucrose partitioning</Keyword>
<Keyword MajorTopicYN="N">water uptake</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>23</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33015535</ArticleId>
<ArticleId IdType="doi">10.1002/pld3.268</ArticleId>
<ArticleId IdType="pii">PLD3268</ArticleId>
<ArticleId IdType="pmc">PMC7522500</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):895-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Sep;166(1):306-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25056922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):515-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Jun;42(6):1775-1787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30756400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 12;5:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3364-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 19;6:33655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27641356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1460-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26802041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Oct;27(10):1481-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17669738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2012 May;33(5):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22453778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2012 Mar;14(2):325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 May;15(5):295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2011 Jan;248(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21125302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2017 Jun;59(6):390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28206710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(400):1221-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Sep;240(3):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24957702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Aug;30(8):910-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Apr;214(1):145-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28055121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e44467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Oct;68(3):289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Jan;176(1):930-945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29158330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(1):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21668536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Sep 1;58(9):1442-1460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28922744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 18;9(11):e111751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1240-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):408-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Apr;64(6):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Nov;37(11):2577-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Nov;33(11):1216-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 05;4:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23847646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2017 May;59(5):311-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28429873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Mar;66(5):1303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25547915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):109-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21771914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):200-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Mar 17;4:4389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24633128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Dec;25(12):1475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Jan;153(1):119-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24814155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1518-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):12055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751789</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000487 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000487 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33015535
   |texte=   Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33015535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020